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Abstract

Apolipoprotein (apo) E plays an important role in the whole body

cholesterol homeostasis. Recent studies suggest that apoE may

also be involved in the local cholesterol transport in the brain,

and may influence the pathogenesis of Alzheimer’s Disease  (AD)

by interacting with the β-amyloid protein and brain lipoprotein

receptors. Since apoE expression is highest in the brain next only

to the liver and associated with the pathogenesis of AD, we

hypothesized that dietary and hormonal interventions, known to

regulate hepatic apoE expression, may also regulate brain apoE

and thereby influence local cholesterol transport. To test this

hypothesis, groups of male C57BL mice were fed either regular

rodent chow or high fat and high cholesterol (HF) enriched diet

for three weeks. In a separate study, groups of male mice were

administered pharmacological doses of 17-β estradiol for 5

consecutive days and sacrificed on the sixth day. As expected,

HF diet elevated liver apoE mRNA and apoE synthesis. Similar

to liver, brain apoE mRNA and synthesis also increased following

HF feeding. Estradiol administration increased liver apoE synthesis

without affecting apoE mRNA. Interestingly, estradiol

administration also increased brain apoE synthesis, but without

altering brain apoE mRNA. These studies suggest that dietary

cholesterol and estrogen administrations elevate brain apoE by

different mechanisms.
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Introduction

Apolipoprotein (apo) E, a 34kDa protein, is a major component

of circulating lipoproteins (1), and is an important player in

maintaining the whole body cholesterol homeostasis (2). ApoE is

abundantly expressed in the liver, brain, and steroidogenic tissue

(3), but unlike the major apoproteins A1 and B, is not expressed

in the gut (4). The high level expression of apoE in the brain, its

presence in the β-amyloid-containing neutritic plaques (5,6), and

association of an isoform of apoE, ε4, in the pathogenesis of

Alzheimer’s Disease (AD) (7), all support apoE’s role in the

pathogenesis of AD. The high avidity binding of apoE to the

β-amyloid protein (8) further established a strong link between

brain apoE and AD. ApoE may either promote aggregation of

diffuse amyloid deposition or its presence in the neutritic plaque

may have resulted from its role in the uptake of either native or

modified lipoproteins via apoE receptors. Indeed, lipoprotein

receptors, LRP (9), LDL receptor (10,11), and SR-BI (12-14) are

expressed in the brain. Given the implications of apoE in the

pathogenesis of AD, and its regulation by nutritional (15) and

hormonal (16) stimuli, the modulation of apoE in the brain by

these stimuli may influence progression and pathogenesis of AD.

ApoE-containing large lipoproteins secreted by astrocytes are taken

up by the neurons, possibly involving an apoE receptor, and

resulting in the stimulation of increased number of synapses (17).

Cholesterol has been implicated in the decreased release of secreted

APP in cultured cells (18). Furthermore, animal studies

demonstrated influence of cholesterol on amyloid precursor protein

(APP) processing and requirements of apoE in this process (19).

A correlation of fibrillar Aβ (1-42) with circulating total cholesterol

and LDL cholesterol further suggested (20) a link between

cholesterol and Aβ deposition in the brain. Thus, lowering

cholesterol may lower Aβ (21, 22). In a preliminary study, dietary

fat increased brain apoE mRNA in the Zucker lean rat (23), but

no changes in the levels of brain apoE were noted in cholesterol-

fed rabbits (24). A separate study in rabbits (25) showed increased

density of cortical apoE immunoreactivity in the brain neurons

after dietary cholesterol feeding. These conflicting results, warrant

a careful study to examine brain regulation of apoE by dietary

lipids.

Estrogen is suggested to play a protective role against AD

pathogenesis through a variety of mechanisms including

upregulation of glutamate transporter (26), activation of protein

kinase C (27), protein kinase B (28), antioxidant effect (29),

abeta modulation (30), and modulation of apoptotic pathway

(31). Reduced cerebrospinal fluid estradiol levels are associated

with increased b-amyloid levels in female patients with AD (32).

Since estrogens also regulate hepatic apoE expression through a

novel mechanism (16), it was hypothesized that estrogen may

influence brain apoE and thereby impact AD pathogenesis. The

present study looks into the mechanistic insights of cholesterol

and estrogen-mediated regulation of the brain apoE. The data

presented in this study suggest that dietary cholesterol and

pharmacological doses of estrogen both regulate brain apoE,

albeit by different mechanisms.

Materials and Methods

Animals and treatments

Mice were obtained from Jackson Laboratories, Bar Harbor,

Maine. Female C57BL mice were fed either rodent chow

containing 5% corn oil or a high fat diet containing 0.5%

cholesterol and 20% hydrogenated coconut oil as previously

described (33,34). At the end of the 3 weeks feeding and a brief
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fasting for 4 h, mice were sacrificed using sodium pentobarbital,

and blood was collected in EDTA-coated tubes, and centrifuged

for 10 min at 10,000 rpm in a table top centrifuge to obtain

plasma. Plasma was analyzed for lipoprotein profile and levels

of apolipoprotein E. Liver and brain were removed for the

preparation of RNA. Part of the liver and brain was used to

measure apoE synthesis. Male Sprague Dawley rats were fed

high fat and high cholesterol diet in a similar manner for 3 weeks.

Plasma isolated after an overnight (12 h) fast was used to measure

lipid levels and profile.

In a separate experiment, male C57BL mice were administered

17β-estradiol as described before (35). Estradiol treatment was

performed for 6 days, and mice sacrificed on the 7th day under

sodium pentobarbital. Mice had free access to rodent chow diet

or a high fat diet (33) and tap water. Plasma was used for the

analysis of lipid and lipoprotein, and tissues were excised for the

preparation of RNA and protein synthesis.

Plasma apoE and hepatic cholesterol measurements were done

as described (16).

RNA Analysis

Total RNA from liver and brain tissues were isolated following

one step RNA isolation method as reported (4). The quality of

RNA was examined by electrophoresing a 10 μg sample of RNA

in 1.2% agarose gel containing formaldehyde and formamide.

The ratio of 28S and 18S RNA was measured to determine the

quality of RNA. ApoE mRNA was quantitated by Northern blotting

(36) as well as by RNase protection assay (37). Measurements of

LDL receptor mRNA were done by RNase protection assay exactly

as described (38). The recombinant probes for apoE and the

reagents for RNA analysis were obtained from Clonegen

Biotechnology, India (www.clonegenbiotech.com).

Protein synthesis

ApoE synthesis was measured in the freshly isolated tissues of

liver and brain. The detailed procedure has been described

elsewhere (39). In brief, tissues were sliced into 1-3 mg pieces,

incubated in the previously oxygenated KRB buffer in the presence

of 35S –methionine. Protein concentration was determined for

normalization purposes. After one hour, tissues were homogenized

and S100 prepared. Protein synthesis was allowed to occur for 1

h at 30 0C followed by termination of the synthesis by transferring

the tubes to the ice bath. ApoE protein was immuno-precipitated

by anti-mouse apoE antibody (Clonegen Biotech, India, www.

clonegenbiotech.com), and subsequent processing of samples were

done as described (39). The immunoprecipitates were separated

in a denaturing gel electrophoresis and the apoE protein bands

were visualized by autoradiography for quantitation.

Statistical analysis

All values are expressed as mean + standard error of mean (SEM).

Data were analyzed for statistical significance compared to vehicle-

treated control group using the analysis of variance (ANOVA). A

p value of <0.05 was considered as significant.

Results

High fat feeding modulates ApoE in the brain

The effects of diet-derived fat and cholesterol on brain apoE

regulation in rats and mice were examined after feeding a high

fat high cholesterol diet for three weeks. As expected, plasma

cholesterol increased significantly both in rats as well as in mice

(33,34). The total cholesterol increased from 106+9 mg/dl to

151+9 mg/dl (p<0.025) in rats and from 158+ mg/dl to 249+15

mg/dl in mice (p<0.025) (Fig 1). Both LDL and HDL cholesterol

also showed increases in rats and mice. To examine if diet-derived

lipid influences hepatic cholesterol levels, liver cholesterol was

also measured. As shown in figure 1, hepatic cholesterol increased

2.5-fold (control 3.18+0.2, HF 7.81+0.8 mg/g liver) in the rats

and 4-fold (control 2.69+0.2, HF 11.04+0.7 mg/g liver) in the

mice. Since cholesterol is known to down-regulate LDL receptor

gene expression, the measurements of hepatic LDL receptor

mRNA by a sensitive ribonuclease protection assay were

performed. As shown in figure 1, hepatic LDL receptor mRNA

decreased both in rats (control 3.7+0.4 pg /μg RNA, HF 2.2+0.3

pg /μg RNA, p<0.05) and in mice (control 3.5 pg/μg RNA, HF

2.3+0.2 pg /μg RNA, p<0.05) (Fig 1).
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Figure 1 : High fat and high cholesterol feeding elevates plasma levels of
cholesterol, hepatic cholesterol and down-regulates hepatic LDL receptor.
Mice and rats were fed high fat and cholesterol diets for 3 weeks, and
plasma lipids were determined. LDL and HDL were measured by
performing FPLC and combining the values of fractions corresponding
to LDL and HDL. LDL receptor mRNA was quantitated by RNAse
protection assay in total RNA isolated from liver tissues as described
(37,38). *p<0.025 compared to control group.

Levels of plasma apoE increased about 50% both in rats (control

14.4+1.6 μg /dl, HF 22.5+2.5 μg /dl, p<0.025) and in mice

(control 7.6+2.4 μg /dl, HF 13.2+2.1 μg/dl) (Fig 2), suggesting

that high fat and cholesterol feeding elevates plasma levels of

apoE. To examine if the changes in the plasma levels of apoE

occurred via transcriptional or posttranscriptional mechanism,

hepatic apoE mRNA was quantitated by ribonuclease protection

assay. First an assay for apoE mRNA quantitation was established

as shown in figure 3. In this assay, protected apoE mRNA fragment

intensity increased with increasing RNA concentration. (Fig 3).
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Using this optimized protection assay, brain apoE mRNA

measurements were done.  As shown in figure 4, high fat feeding

increased mouse brain apoE mRNA. Liver apoE mRNA also

increased significantly (data not shown). To find out if the increased

apoE levels represents increased rate of apoE synthesis, in vitro

translation of apoE on isolated liver and brain tissues were

performed ex vivo. As shown in figure 5, high fat feeding increased

apoE synthesis in the liver as well as in the brain. These results

suggest that increased plasma levels of apoE occurred partly via

up-regulation of the hepatic apoE gene expression, since liver is

the main organ expressing apoE.
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Figure 2 : High fat and high cholesterol feeding elevates plasma levels of
apoE in rats and mice. Groups of mice (n=4) and rats (n=4) were fed
high fat and cholesterol diet for 3 weeks followed by isolation of plasma
by collecting blood in EDTA containing tubes and centrifuging for 10
min. ApoE measurements were done by ELISA (16). Both rats and mice
elevated levels of their plasma apoE. *p<0.025 compared to control
group.

Figure 3 : RNAse protection assay for the quantitation of apoE mRNA.
Riboprobes were synthesized in vitro using an in vitro RNA synthesis kit
(Ambion) with radiolabeled UTP[32P] and linearized recombinant
plasmids as described (37,38). The synthesized riboprobes were purified
using RNase-free Sephadex G-25 column. Panel A- The quality and size
of riboprobes were checked by running a sequencing gel. Panel B- ApoE
riboprobes were hybridized with increasing amounts of total hepatic
RNA as indicated and separated in a sequencing gel. Panel C- Five
microgram of total pooled hepatic RNA from 4 mice in each group were
hybridized with riboprobes, processed as described, and separated in a
sequencing gel. P, placebo and E, estradiol treated.

Estradiol administration regulates brain

apoE expression

To investigate if brain apoE is regulated by estradiol administration,

groups of mice were administered estardiol for 6 days, and on

the seventh day, mice were sacrificed for plasma analysis as well

as hepatic and brain RNA analysis for apoE regulation. Lipid

changes in the estradiol administered rats and mice have been

Figure 4 : High fat feeding elevates apoE mRNA in the brain. Mice fed
chow or high fat diet for 3 weeks as described under the materials and
methods section were sacrificed and liver excised for RNA preparation.
Ten microgram RNA was taken for RNAse protection assay. Three RNA
samples from each group were analyzed. Lanes 1 and 2 show apoE and
b-actin riboprobes synthesized in vitro, and remaining lanes indicate
protected fragments after hybridization with the total RNA. When the
intensities of the apoE protected fragmnebta were scanned, the high fat-
fed group showed significantly higher intensities compared to the control
group (p<0.025).

Figure 5 : High fat feeding increases apoE synthesis in the liver and
brain. Slices of tissues ( 2-3 mg) from low and high fat fed mice were
subjected to in vitro synthesis in the presence of  35S-methionine using
wheat germ translation system (Ambion) as described in the materials
and methods section. After the in vitro translation, the contents were put
on ice and immunoprecipitated using mouse anti apoE antibody, and
run in a polyacrylamide gel. Following the electrophoresis, the gel was
dried under heated vacuum and exposed to x-ray film. The arrow indicates
newly synthesized apoE protein. Left panel shows apoE synthesis in the
liver and the right panel shows apoE synthesis in the brain. C indicates
control group and HF indicates high fat-fed group.

described before (16, 35). In this study, estrogen mediated

regulation of brain apoE was investigated. As shown in figure 6,

hepatic and brain apoE mRNA did not change following estradiol

administration. However, when ex vivo translation on brain tissues

was performed using an in vitro translation system, apoE protein

synthesis increased both in the liver (not shown, 16) and in the

brain (Figure 7).
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dietary cholesterol increased the expression of hepatic apoE gene

regulation, and estrogen administration increased plasma levels

of apoE by post-transcriptional mechanism (16). In the present

study, cholesterol feeding raised brain apoE mRNA similar to

liver, suggesting that apoE gene is regulated by cholesterol feeding

similarly in the liver and the brain. As expected, the increased

brain apoE mRNA levels resulted in increased apoE synthesis.

This is an important finding suggesting the role of dietary cholesterol

on brain apoE regulation. Thus, diets rich in cholesterol are likely

to influence pathogenicity of AD via modulation of apoE gene.

This is the first study demonstrating a distinct association between

dietary cholesterol and brain apoE. Role of disrupted cholesterol

metabolism in a transgenic mouse model of Alzheimer’s disease

has been studied, which showed that the diet-induced chronic

changes in plasma cholesterol also increased apoE content in

the liver and the brain (42). These findings were further

corroborated by the increased secretion of apoE by glial cells

following cholesterol loading, and decreased apoE following

treatments with statins (42). These data corroborate the findings

in the present study that dietary cholesterol up-regulate brain

apoE by transcriptional mechanism. Thus, dietary cholesterol

influences brain apoE metabolism which may impact

pathogenesis of AD.

A number of studies suggest that estrogens play a protective role

against AD pathogenesis through a variety of mechanisms. Among

other mechanisms estrogen-induced apoE regulation could play

an important role in the process of AD development. Since

estrogens regulate hepatic apoE expression through a novel

mechanism (16), it was hypothesized that similar mechanism

might operate in the brain as well. Indeed, in our hands, similar

to earlier studies, estrogen did not influence hepatic and brain

apoE mRNA, but increased apoE synthesis on hepatic and brain

tissues ex vivo. These data suggest that estrogen modulates apoE

regulation in liver and brain by similar mechanism. Although

detailed studies on the rates of translation on isolated monosomes

and polysomes were not carried out in this study, but an earlier

study investigating the effects of estrogen on apoE regulation

showed a shift of apoE mRNA to polysomal fractions, which

correlated with increased rates of apoE synthesis. It is plausible

that similar mechanism may have resulted in increased apoE

synthesis in the brain. In summary, present study provides

experimental data for the mechanistic insights of cholesterol and

estrogen-mediated regulation of the brain apoE. Both the dietary

cholesterol and estrogen increase apoE synthesis in the brain,

but they differ in terms of their loci of regulation.
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